Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 16(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399299

RESUMEN

Capsicum annuum (L.) is one of the essential spices most frequently used in our daily routine and has remarkable ethnobotanical and pharmacological properties. Its fruits are rich in vitamins, minerals, carotenoids, and numerous other phenolic metabolites with a well-known antioxidant activity. Regular consumption of chili fruits may have a positive influence on human health. Therefore, we investigated a commercially available chili fruit powder in the present study, extracting it with 50% ethanol. The dried hydro-ethanolic extract (CAE) was thoroughly analyzed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS), and 79 bioactive phenolic constituents were identified. Then, we quantified the main phenolic compounds and found a polyphenol content of 4.725 ± 1.361 mg Eq tannic acid/100 g extract and a flavonoid amount of 1.154 ± 0.044 mg Eq rutin/100 g extract. Phenolic secondary metabolites are known for their dual redox behavior as antioxidants/pro-oxidants, underlying their numerous benefits in health and disease. Thus, the antioxidant potential of CAE was evaluated using three methods; our results could explain the protective effects of chili fruits: IC50DPPH = 1.669 mg/mL, IC50ABTS = 0.200 mg/mL, and EC50FRAP = 0.561 mg/mL. The pro-oxidant potential of phenolic compounds could be a basis for CAE cytotoxicity, investigated in vitro on tumor cell lines and in vivo on Daphnia sp. Results demonstrated the dose- and time-dependent CAE's cytotoxic activity; the highest antiproliferative activity was recorded on colon (LoVo) and breast (MDA-MB-231) cancer cell lines after 48 h of exposure (IC50 values < 200 µg/mL). In vivo testing on Daphnia sp. reported a potent CAE cytotoxicity after 48 h and embryonic developmental delays. Extensive data analyses support our results, showing a significant correlation between the CAE's concentration, phenolic compound content, antioxidant activity, exposure time, and the viability rate of different tested cell lines.

2.
Pharmaceutics ; 15(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631338

RESUMEN

Endothelial dysfunction is the basis of the physiopathological mechanisms of vascular diseases. In addition to the therapeutic activity of plant extracts, cytotoxicity is significant. This research evaluates the cytotoxicity of three vegetal extracts (Calendulae flos extract-CE, Ginkgo bilobae folium extract-GE, and Sophorae flos extract-SE). In vitro evaluation was performed using an endothelial cell line model (Human Pulmonary Artery Endothelial Cells-HPAEC) when a dose-dependent cytotoxic activity was observed after 72 h. The IC50 values were calculated for all extracts: Calendulae flos extract (IC50 = 91.36 µg/mL), Sophorae flos extract (IC50 = 68.61 µg/mL), and Ginkgo bilobae folium extract (IC50 = 13.08 µg/mL). Therefore, at the level of HPAEC cells, the cytotoxicity of the extracts follows the order GE > SE > CE. The apoptotic mechanism implied in cell death was predicted for several phytocompounds using the PASS algorithm and molecular docking simulations, highlighting potential interactions with caspases-3 and -8. In vivo analysis was performed through brine shrimp lethality assay (BSLA) when lethal, behavioral, and cytological effects were evaluated on Artemia salina larvae. The viability examined after 24 h (assessment of lethal effects) follows the same sequence: CE > SE > GE. In addition, the predicted cell permeability was observed mainly for GE constituents through in silico studies. However, the extracts can be considered nontoxic according to Clarckson's criteria because no BSL% was registered at 1200 µg/mL. The obtained data reveal that all three extracts are safe for human use and suitable for incorporation in further pharmaceutical formulations.

3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511428

RESUMEN

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.


Asunto(s)
Lamiaceae , Rosmarinus , Thymus (Planta) , Humanos , Antioxidantes/química , Thymus (Planta)/química , Rosmarinus/química , Lamiaceae/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Polifenoles/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
4.
Molecules ; 28(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175078

RESUMEN

Chronic venous disease is one of the most common vascular diseases; the signs and symptoms are varied and are often neglected in the early stages. Vascular damage is based on proinflammatory, prothrombotic, prooxidant activity and increased expression of several matrix metalloproteinases (MMPs). The aim of this research is preparation and preliminary characterization of three vegetal extracts (Sophorae flos-SE, Ginkgo bilobae folium-GE and Calendulae flos-CE). The obtained dry extracts were subjected to phytochemical screening (FT-ICR-MS, UHPLC-HRMS/MS) and quantitative analysis (UHPLC-HRMS/MS, spectrophotometric methods). Antioxidant activity was evaluated using three methods: FRAP, DPPH and ABTS. More than 30 compounds were found in each extract. The amount of flavones follows the succession: SE > GE > CE; the amount of phenolcarboxylic acids follows: SE > CE > GE; and the amount of polyphenols follows: SE > GE > CE. Results for FRAP method varied as follows: SE > CE > GE; results for the DPPH method followed: SE > GE > CE; and results for ABTS followed: SE > GE > CE. Strong and very strong correlations (appreciated by Pearson coefficient) have been observed between antioxidant activity and the chemical content of extracts. Molecular docking studies revealed the potential of several identified phytochemicals to inhibit the activity of four MMP isoforms. In conclusion, these three extracts have potential in the treatment of chronic venous disease, based on their phytochemical composition.


Asunto(s)
Antioxidantes , Enfermedades Vasculares , Humanos , Antioxidantes/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/química
5.
Plants (Basel) ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145799

RESUMEN

Since medicinal plants are widely used in treating various diseases, phytoconstituents enrichment strategies are of high interest for plant growers. First of all, we investigated the impact of phytosociological cultivation on polyphenolic content (total flavonoids-TFL, and total polyphenols-TPC) of peppermint (Mentha piperita L.) and lemon balm (Melissa officinalis L.) leaves, using spectrophotometric methods. Secondly, the influence of chemical (NPK) and organic (BIO) fertilization on polyphenolic content and plant material quality was also assessed. Dry extracts were obtained from harvested leaves using hydroethanolic extraction solvents for further qualitative and quantitative assessment of phytoconstituents by FT-ICR MS and UHPLC-MS. Furthermore, the antioxidant activity of leaf extracts was determined in vitro using DPPH, ABTS and FRAP methods. Molecular docking simulations were employed to further evaluate the antioxidant potential of obtained extracts, predicting the interactions of identified phytochemicals with sirtuins. The concentration of polyphenols was higher in the plant material harvested from the phytosociological culture. Moreover, the use of BIO fertilizer led to the biosynthesis of a higher content of polyphenols. Higher amounts of phytochemicals, such as caffeic acid, were determined in extracts obtained from phytosociological crops. The antioxidant activity was dependent on polyphenols concentration, more potent inhibition values being observed for the extracts obtained from the phytosociological batches. Molecular docking studies and MM/PBSA calculations revealed that the obtained extracts have the potential to directly activate sirtuins 1, 5 and 6 through several polyphenolic compounds, such as rosmarinic acid, thus complementing the free radical scavenging activity with the potential stimulation of endogenous antioxidant defense mechanisms. In conclusion, growing medicinal plants in phytosociological cultures treated with biofertilizers can have a positive impact on plant material quality, concentration in active constituents and biological activity.

6.
Plants (Basel) ; 11(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807632

RESUMEN

Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA